Data-driven marketing hay ‘marketing dựa trên quá trình phân tích dữ liệu’ không phải là khái niệm mới nhưng thay vì sử dụng dữ liệu để hoạch định phương hướng, không ít doanh nghiệp lại rơi vào ‘cái bẫy’: đưa ra quyết định trước rồi chọn lọc data chứng minh quan điểm! Dù cách tiếp cận này đôi lúc không sai nhưng dưới góc nhìn chủ quan, dù dày dặn đến mấy vẫn sẽ có những ‘điểm mù’ biến những sự thật tưởng đúng thành sai!
Một cách tương tự, phát triển chiến lược dựa trên dữ liệu cũng như chọn dòng hải triều phù hợp để đưa thuyền thuận sóng đi xa. Ngược lại, cố chấp lao về phía trước dựa theo cảm tính, có thể bạn sẽ rơi vào cảnh trầy trật giữa cơn bão hay những dòng nghịch lưu!
Vậy làm thế nào để biến tìm ra những insight quý giá giữa ‘mỏ dữ liệu’ tưởng như vô cùng tận? Hãy cùng iSharedigital tìm hiểu thông qua những gợi ý dưới đây nhé!
4 bước cần làm trước khi phân tích dữ liệu
Tất cả mọi việc đều bắt đầu với câu hỏi tại sao, phân tích dữ liệu cũng vậy. Có thể bạn rất rành về excel hay các kỹ thuật xử lý thông tin, thế nhưng nếu mục tiêu cuối cùng của bạn là tìm ra những insight ‘đắt giá’ thì trước hết bạn cần xác định đâu là điều bạn muốn tìm và tìm điều đó ra sao giữa vô vàn chỉ số,
Một trong những gợi ý của Max Shron trước khi ‘bơi’ vào biển dữ liệu đó là mô hình 4 bước: Context – Need – Vision – Outcome!
- Context: Bên cạnh vấn đề bạn đang đi tìm giải pháp, bạn sẽ cần quan tâm đến bối cảnh của dự án như ai là người cần và sử dụng nghiên cứu này? Điều họ muốn đạt được là gì? Họ sẽ làm gì tiếp theo sau khi đạt được thông tin cần thiết và những điều bạn sẽ chuẩn bị làm có giúp họ điều đó hay không.
Ví dụ: “phòng marketing của một thương hiệu thời trang có độ hiện diện mạnh trên online muốn thuyết phục khách hàng mới thử sản phẩm và kêu gọi khách hàng cũ tiếp tục ủng hộ những bộ sưu tập mới. Quyết định cuối cùng sẽ được CMO đưa ra”.
- Need: Đâu là những nhu cầu cụ thể có thể giải quyết bằng dữ liệu? Xác định được nhu cầu trên sẽ giải quyết được điều gì. Thông thường, bạn sẽ rất khó cụ thể hóa ‘nhu cầu’ doanh nghiệp ngay bước đầu tiên mà cần làm việc sát sao với những bên liên quan để thu hẹp đề bài. Và có thể đôi lúc có thể bạn sẽ phải đối mặt với những yêu cầu bất khả thi, thế nên hãy chắc rằng bài toán bạn đang cố giải có thể sử dụng ‘dữ liệu’ để trả lời.
Ví dụ: “để đẩy mạnh doanh số cho sản phẩm mới, bạn nên đẩy mạnh quảng cáo tới thành phố nào?”
- Vision: Phác thảo sơ bộ điều chúng ta sẽ đạt được sau khi giải quyết được ‘nhu cầu’ ở bước trước. Bạn có thể đồ thị hóa/ mô hình hóa kết qua ra không (mockup)? Cơ sở lý luận đằng sau là gì? Không có mục tiêu để neo đậu, rất có thể bạn sẽ xa đà vào phân tích những điều không định chứng minh.
Ví dụ: vision – xác định thứ tự yêu tiên của các thành phố sẽ đẩy mạnh quảng cáo; mockup – Sài Gòn mang lại 40% doanh số, Hà Nội chiếm 35%…
- Outcome: kết quả bạn tìm thấy sẽ được sử dụng như thế nào và bởi ai? Làm thế nào để đo lường mức độ thành công của dự án. Nếu vision giúp bạn có cái nhìn về mục tiêu cuối cùng thì outcome chỉ dừng lại sau khi những mô hình hay kết luận được trả ra.
Ví dụ: phòng marketing phải được đào tạo để sử dụng hệ thống CRM để làm kim chi nam đưa ra quyết định. Kết quả sẽ được đo lường bằng doanh thu thực tế…
Một ví dụ đơn giản hơn có thể đến từ các trang thương mại điện tử. Để tạo ra các chiến dịch lớn như 11-11, 12-12, Noel, Tết… đôi lúc bạn sẽ cần cân nhắc liệu đâu là điều bạn nên bắt đầu – voucher với đơn hàng tối thiểu lớn hay nhỏ? Các voucher trên sẽ kích thích hành vi ra sao? Liệu voucher hấp dẫn cho đơn hàng lớn liệu sẽ khuyến khích đối tượng mục tiêu mua nhiều sản phẩm nhỏ gộp lại hay khiến họ lùng sục những sản phẩm khổng lồ có giá trị ‘vừa khít’ giới hạn đặt ra? Liệu những hành vi đó có phù hợp với danh mục sản phẩm bạn đang cố đẩy mạnh…
Bắt đầu câu hỏi ‘tại sao’, ‘để làm gì’ trước khi trả lời ‘làm thế nào’ sẽ giúp bạn tìm thấy những insight tự mang khả năng định hướng chiến lược thay vì những ‘thực tế thú vị’ nhưng không đủ mạnh để làm điểm tựa cho kế hoạch đường dài.
Hướng dẫn cách phân tích dữ liệu để tìm insight hiệu quả
1. Phác họa điều bạn muốn đạt được sau khi phân tích dữ liệu
Khi nhắc đến việc phác họa những điều bạn muốn đạt được sau tất cả, điều iSharedigital muốn nói tới là những ‘Mockup’ như đã đề cập trước đó: biểu đồ, tổ hợp những trường thông tin, những dữ liệu kết nối bởi logic để đưa ra kết luận cho một vấn đề…
Đôi lúc, những phác họa nói trên có thể chỉ đơn giản là biểu đồ đơn giản như ví dụ về thương hiệu thời trang: “sài gòn chiếm 40% doanh số thu về, Hà Nội chiếm 35%…”; đôi lúc bạn sẽ cần những bảng biểu riêng biệt để phân tích phản ứng của từng nhóm tuổi tới từng ngành hàng trước và sau ‘sự kiện lớn’ dựa trên các gói ưu đãi như trong ví dụ về công ty TMĐT…
Cũng tương tự như việc vẽ tranh, trước khi bắt đầu đặt bút bạn đã có những hình dung sơ lược về những điều bạn muốn truyền tải trong đầu. Dù trong quá trình xử lý và hoàn thiện, đôi lúc kết quả sẽ có điều chỉnh, thêm thắt nhưng ý tưởng chủ đạo và cảm hứng sáng tác nhìn chung vẫn vậy.
Thế nên hãy cứ phác thảo đích đến trước đi, sau khi đánh giá được tính khả thi, sớm muộn bạn cũng tìm được cách xử lý kho dữ liệu cồng kềnh hiện đang sở hữu!
2. Loại bỏ những dữ liệu dư thừa trong quá trình chuẩn bị
Sau khi mường tượng được đích đến, bước tiếp theo bạn sẽ phải trả lời câu hỏi: tiếp cận ‘mớ dữ liệu hỗn độn’ trước mặt ra sao. Một vài gợi ý cho giai đoạn này là:
- Lọc: Cắt bỏ những thông tin gây nhiễu và chỉ tập trung vào dữ liệu chính, chủ đề chính.
- Sắp xếp: Sắp xếp thứ tự từng nhóm dữ liệu theo tầm quan trọng
- Nhóm và phân loại: Tổng hợp và phân nhóm dữ liệu theo những đặc tính tương đồng/ liên quan
- Hình ảnh hóa: Sử dụng đồ thị, mô hình, hình ảnh để thể hiện dữ liệu
3. Biến dữ liệu số thành hình ảnh
Nếu để ý, bạn sẽ thấy iSharedigital liên tục nhấn mạnh vào việc chuyển thể dữ liệu thành hình ảnh đồ thị. Sở dĩ như vậy là bởi số liệu chỉ giúp bạn nhìn thấy những sự thật đã biết còn đồ thị sẽ mở ra những nghịch lý bạn không nghĩ đến hay những ‘vùng đất’ bạn chưa đặt chân tới bao giờ trong tâm trí khách hàng. Nếu bạn đang sử dụng các hệ thống CRM lớn, bạn sẽ dễ dàng tìm thấy vô vàn công cụ hỗ trợ nhanh với độ tùy chỉnh cao.
Một vài gợi ý bạn nên cân nhắc khi xử lý dữ liệu trong giai đoạn này như:
- Tập trung vào xu thế thay vì chỉ chìm đắm trong lịch sử dữ liệu: insight thường đến từ xu thế, đặc biệt là những thay đổi mới trong dữ liệu hành vi mà bạn may mắn lọc được.
- So sánh các khoảng thời gian: so sánh tuần với tuần, tháng với tháng, mùa lễ giữa 2 năm để tìm ra những thay đổi, những xu hướng chung… từ đó tìm ra những giả định/ mệnh đề cần chứng minh. Chẳng hạn, bạn có thể bắt đầu đơn giản với công cụ lập kế hoạch từ khóa về sản phẩm của mình và xem đâu là mùa cao điểm được tìm kiếm? Bạn có hoạt động gì trong thời gian đó không? Dữ liệu so sánh với những năm trước đó ra sao
- Tìm kiếm mối tương quan: thường thì những insight mạnh tìm thấy từ dữ liệu luôn có mối tương quan hay phụ thuộc vào một hay vài biến số và nhiệm vụ của bạn lúc này là tìm ra chúng!
- Tiếp cận từ nhiều góc độ khác nhau: góc nhìn của một người luôn có giới hạn, bởi vậy, sự phối hợp, thảo luận của nhiều người, nhiều bộ phận với kinh nghiệm và đặc thù chuyên môn sẽ giúp bạn bao quát những ‘điểm mù’ để tìm ra những insight đắt giá.
- Luôn phân tích dữ liệu dưới 2 góc độ khác nhau: chẳng hạn sử dụng 2 loại đồ thị để phân tích. Dữ liệu cũng như con dao hai lưỡi, hãy chắc rằng bạn đang đọc đúng thông điệp từ những con số trước khi đưa ra những quyết định không thể quay đầu!
Lời cuối
Và cuối cùng, quan trọng nhất của quá trình phân tích dữ liệu vẫn là một hệ thống có khả năng thu thập thông tin từ nhiều nguồn và sở hữu những tính năng hỗ trợ hiệu quả. Với mô hình kinh doanh nhỏ, dữ liệu ít, bạn có thể bắt đầu với những ‘phiên bản đơn giản’ tự code trên Google Sheet. Thế nhưng khi sở hữu dữ liệu ở quy mô lớn và có những nhu cầu phân tích phức tạp, chuyên sâu hơn, bạn sẽ cần phát triển những hệ thống bài bản hơn – chẳng hạn CRM.
Để được hỗ trợ về những hệ thống giúp bạn tối ưu hóa quá trình xử lý, phân tích thông tin và đem lại hiệu quả rõ nét trong các hoạt động sales và marketing, hãy chia sẻ cho iSharedigital những nhu cầu của bạn để được hỗ trợ tư vấn nhé!
Ngoài ra bạn cũng có thể tìm hiểu thêm một vài chủ đề liên quan dưới đây trước để có cái nhìn rõ hơn về các xu hướng hiện tại: